Biblioteca Hospital 12 de Octubre
Vista normal Vista MARC Vista ISBD

Toll-like 4 receptor inhibitor TAK-242 decreases neuroinflammation in rat brain frontal cortex after stress. [artículo]

Por: Gárate, Iciar [Instituto de Investigación i+12] | García Bueno, Borja [Instituto de Investigación i+12] | Muñoz Madrigal, José Luis [Instituto de Investigación i+12] | Caso, Javier Rubén [Instituto de Investigación i+12] | Leza, Juan Carlos [Instituto de Investigación i+12].
Colaborador(es): Instituto de Investigación imas12.
Tipo de material: materialTypeLabelArtículoEditor: Journal of neuroinflammation, 2014Descripción: 11:8.Recursos en línea: Acceso libre Resumen: Background: The innate immune response is the first line of defence against invading microorganisms and it is also activated in different neurologic/neurodegenerative pathological scenarios. As a result, the family of the innate immune toll-like receptors (TLRs) and, in particular, the genetic/pharmacological manipulation of the TLR-4 signalling pathway emerges as a potential therapeutic strategy. Growing evidence relates stress exposure with altered immune responses, but the precise role of TLR-4 remains partly unknown. Methods: The present study aimed to elucidate whether the elements of the TLR-4 signalling pathway are activated after acute stress exposure in rat brain frontal cortex and its role in the regulation of the stress-induced neuroinflammatory response, by means of its pharmacological modulation with the intravenous administration of the TLR-4 specific inhibitor TAK-242. Considering that TLR-4 responds predominantly to lipopolysaccharide from gram-negative bacteria, we checked whether increased intestinal permeability and a resultant bacterial translocation is a potential regulatory mechanism of stress-induced TLR-4 activation. Results: Acute restraint stress exposure upregulates TLR-4 expression both at the mRNA and protein level. Stress-induced TLR-4 upregulation is prevented by the protocol of antibiotic intestinal decontamination made to reduce indigenous gastrointestinal microflora, suggesting a role for bacterial translocation on TLR-4 signalling pathway activation. TAK-242 pre-stress administration prevents the accumulation of potentially deleterious inflammatory and oxidative/nitrosative mediators in the brain frontal cortex of rats. Conclusions: The use of TAK-242 or other TLR-4 signalling pathway inhibitory compounds could be considered as a potential therapeutic adjuvant strategy to constrain the inflammatory process taking place after stress exposure and in stress-related neuropsychiatric diseases.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    valoración media: 0.0 (0 votos)
Tipo de ítem Ubicación actual Signatura Estado Fecha de vencimiento
Artículo Artículo PC16659 (Navegar estantería) Disponible

Formato Vancouver:
Gárate I, García Bueno B, Madrigal JL, Caso JR, Alou L, Gómez Lus ML et al. Toll-like 4 receptor inhibitor TAK-242 decreases neuroinflammation in rat brain frontal cortex after stress. J Neuroinflammation. 2014 Jan 11;11:8.

PMID: 24410883
PMC3897306

Contiene 61 referencias

Background: The innate immune response is the first line of defence against invading microorganisms and it is also activated in different neurologic/neurodegenerative pathological scenarios. As a result, the family of the innate immune toll-like receptors (TLRs) and, in particular, the genetic/pharmacological manipulation of the TLR-4 signalling pathway emerges as a potential therapeutic strategy. Growing evidence relates stress exposure with altered immune responses, but the precise role of TLR-4 remains partly unknown.
Methods: The present study aimed to elucidate whether the elements of the TLR-4 signalling pathway are activated after acute stress exposure in rat brain frontal cortex and its role in the regulation of the stress-induced neuroinflammatory response, by means of its pharmacological modulation with the intravenous administration of the TLR-4 specific inhibitor TAK-242. Considering that TLR-4 responds predominantly to lipopolysaccharide from gram-negative bacteria, we checked whether increased intestinal permeability and a resultant bacterial translocation is a potential regulatory mechanism of stress-induced TLR-4 activation.

Results: Acute restraint stress exposure upregulates TLR-4 expression both at the mRNA and protein level. Stress-induced TLR-4 upregulation is prevented by the protocol of antibiotic intestinal decontamination made to reduce indigenous gastrointestinal microflora, suggesting a role for bacterial translocation on TLR-4 signalling pathway activation. TAK-242 pre-stress administration prevents the accumulation of potentially deleterious inflammatory and oxidative/nitrosative mediators in the brain frontal cortex of rats.
Conclusions: The use of TAK-242 or other TLR-4 signalling pathway inhibitory compounds could be considered as a potential therapeutic adjuvant strategy to constrain the inflammatory process taking place after stress exposure and in stress-related neuropsychiatric diseases.

No hay comentarios para este ejemplar.

Ingresar a su cuenta para colocar un comentario.

Con tecnología Koha