Biblioteca Hospital 12 de Octubre
Vista normal Vista MARC Vista ISBD

Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer. [artículo]

Por: Ciruelos Gil, Eva María [Oncología Médica].
Colaborador(es): Servicio de Oncología Médica.
Tipo de material: materialTypeLabelArtículoEditor: Cancer treatment reviews, 2014Descripción: 40(7):862-71.Recursos en línea: Solicitar documento Resumen: Approximately 70-75% of breast cancers express the estrogen receptor (ER), indicating a level of dependence on estrogen for growth. Endocrine therapy is an important class of target-directed therapy that blocks the growth-promoting effects of estrogen via ER. Although endocrine therapy continues to be the cornerstone of effective treatment of ER-positive (ER+) breast cancer, many patients with advanced ER+ breast cancer encounter de novo or acquired resistance and require more aggressive treatment such as chemotherapy. Novel approaches are needed to augment the benefit of existing endocrine therapies by prolonging time to disease progression, preventing or overcoming resistance, and delaying the use of chemotherapy. The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway is a key intracellular signaling system that drives cellular growth and survival; hyperactivation of this pathway is implicated in the tumorigenesis of ER+ breast cancer and in resistance to endocrine therapy. Moreover, preclinical and clinical evidence show that PI3K/AKT/mTOR pathway inhibition can augment the benefit of endocrine therapy in ER+ breast cancer, from the first-line setting and beyond. This article will review the fundamental role of the PI3K/AKT/mTOR pathway in driving ER+ breast tumors, and its inherent interdependence with ER signaling. In addition, ongoing strategies to combine PI3K/AKT/mTOR pathway inhibitors with endocrine therapy for improved clinical outcomes, and methods to identify patient populations that would benefit most from inhibition of the PI3K/AKT/mTOR pathway, will be evaluated.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    valoración media: 0.0 (0 votos)
Tipo de ítem Ubicación actual Signatura Estado Fecha de vencimiento
Artículo Artículo PC16634 (Navegar estantería) Disponible

Formato Vancouver:
Ciruelos Gil EM. Targeting the PI3K/AKT/mTOR pathway in estrogen receptor-positive breast cancer. Cancer Treat Rev. 2014 Aug;40(7):862-71.

PMID: 24774538

Contiene 121 referencias

Approximately 70-75% of breast cancers express the estrogen receptor (ER), indicating a level of dependence on estrogen for growth. Endocrine therapy is an important class of target-directed therapy that blocks the growth-promoting effects of estrogen via ER. Although endocrine therapy continues to be the cornerstone of effective treatment of ER-positive (ER+) breast cancer, many patients with advanced ER+ breast cancer encounter de novo or acquired resistance and require more aggressive treatment such as chemotherapy. Novel approaches are needed to augment the benefit of existing endocrine therapies by prolonging time to disease progression, preventing or overcoming resistance, and delaying the use of chemotherapy. The phosphatidylinositol 3-kinase/AKT/mammalian target of rapamycin (PI3K/AKT/mTOR) pathway is a key intracellular signaling system that drives cellular growth and survival; hyperactivation of this pathway is implicated in the tumorigenesis of ER+ breast cancer and in resistance to endocrine therapy. Moreover, preclinical and clinical evidence show that PI3K/AKT/mTOR pathway inhibition can augment the benefit of endocrine therapy in ER+ breast cancer, from the first-line setting and beyond. This article will review the fundamental role of the PI3K/AKT/mTOR pathway in driving ER+ breast tumors, and its inherent interdependence with ER signaling. In addition, ongoing strategies to combine PI3K/AKT/mTOR pathway inhibitors with endocrine therapy for improved clinical outcomes, and methods to identify patient populations that would benefit most from inhibition of the PI3K/AKT/mTOR pathway, will be evaluated.

No hay comentarios para este ejemplar.

Ingresar a su cuenta para colocar un comentario.

Con tecnología Koha