Biblioteca Hospital 12 de Octubre
Castellano, Daniel

Identification of Tissue microRNAs Predictive of Sunitinib Activity in Patients with Metastatic Renal Cell Carcinoma. [artículo] - PloS one, 2014 - 9(1):e86263.

Formato Vancouver:
Prior C, Pérez-Gracia JL, García-Donas J, Rodríguez-Antona C, Guruceaga E, Esteban E et al. Identification of tissue microRNAs predictive of sunitinib activity in patients with metastatic renal cell carcinoma. PLoS One. 2014 Jan 24;9(1):e86263.

PMID: 24475095
PMC3901669.

Contiene 34 referencias

Purpose: To identify tissue microRNAs predictive of sunitinib activity in patients with metastatic renal-cell-carcinoma (MRCC) and to evaluate in vitro their mechanism of action in sunitinib resistance.
Methods: We screened 673 microRNAs using TaqMan Low-density-Arrays (TLDAs) in tumors from MRCC patients with extreme phenotypes of marked efficacy and resistance to sunitinib, selected from an identification cohort (n = 41). The most relevant differentially expressed microRNAs were selected using bioinformatics-based target prediction analysis and quantified by qRT-PCR in tumors from patients presenting similar phenotypes selected from an independent cohort (n = 101). In vitro experiments were conducted to study the role of miR-942 in sunitinib resistance.

Results: TLDAs identified 64 microRNAs differentially expressed in the identification cohort. Seven candidates were quantified by qRT-PCR in the independent series. MiR-942 was the most accurate predictor of sunitinib efficacy (p = 0.0074). High expression of miR-942, miR-628-5p, miR-133a, and miR-484 was significantly associated with decreased time to progression and overall survival. These microRNAs were also overexpressed in the sunitinib resistant cell line Caki-2 in comparison with the sensitive cell line. MiR-942 overexpression in Caki-2 up-regulates MMP-9 and VEGF secretion which, in turn, promote HBMEC endothelial migration and sunitinib resistance.
Conclusions: We identified differentially expressed microRNAs in MRCC patients presenting marked sensitivity or resistance to sunitinib. MiR-942 was the best predictor of efficacy. We describe a novel paracrine mechanism through which high miR-942 levels in MRCC cells up-regulates MMP-9 and VEGF secretion to enhance endothelial migration and sunitinib resistance. Our results support further validation of these miRNA in clinical confirmatory studies.

Con tecnología Koha