000 nab a22 7a 4500
999 _c15954
_d15954
003 PC15954
005 20210625062816.0
008 200529b xxu||||| |||| 00| 0 eng d
040 _cH12O
041 _aeng
100 _91880
_aCriado Carrasco, Gabriel
_eInstituto de Investigación i+12
245 0 0 _aCharacteristics of TCR/CD3 complex CD3{varepsilon} chains of regulatory CD4+ T (Treg) lymphocytes: role in Treg differentiation in vitro and impact on Treg in vivo.
_h[artículo]
260 _bJournal of leukocyte biology,
_c2014
300 _a95(3):441-50.
500 _aFormato Vancouver: Rojo JM, Ojeda G, Acosta YY, Montes-Casado M, Criado G, Portolés P. Characteristics of TCR/CD3 complex CD3{varepsilon} chains of regulatory CD4+ T (Treg) lymphocytes: role in Treg differentiation in vitro and impact on Treg in vivo. J Leukoc Biol. 2014 Mar;95(3):441-50.
501 _aPMID: 24212096
504 _aContiene 85 referencias
520 _aTregs are anergic CD4(+)CD25(+)Foxp3(+) T lymphocytes exerting active suppression to control immune and autoimmune responses. However, the factors in TCR recognition underlying Treg differentiation are unclear. Based on our previous data, we hypothesized that Treg TCR/CD3 antigen receptor complexes might differ from those of CD4(+)CD25(-) Tconv. Expression levels of TCR/CD3, CD3ε,ζ chains, or other molecules involved in antigen signaling and the characteristics of CD3ε chains were analyzed in thymus or spleen Treg cells from normal mice. Tregs had quantitative and qualitatively distinct TCR/CD3 complexes and CD3ε chains. They expressed significantly lower levels of the TCR/CD3 antigen receptor, CD3ε chains, TCR-ζ chain, or the CD4 coreceptor than Tconv. Levels of kinases, adaptor molecules involved in TCR signaling, and early downstream activation pathways were also lower in Tregs than in Tconv. Furthermore, TCR/CD3 complexes in Tregs were enriched in CD3ε chains conserving their N-terminal, negatively charged amino acid residues; this trait is linked to a higher activation threshold. Transfection of mutant CD3ε chains lacking these residues inhibited the differentiation of mature CD4(+)Foxp3(-) T lymphocytes into CD4(+)Foxp3(+) Tregs, and differences in CD3ε chain recognition by antibodies could be used to enrich for Tregs in vivo. Our results show quantitative and qualitative differences in the TCR/CD3 complex, supporting the hyporesponsive phenotype of Tregs concerning TCR/CD3 signals. These differences might reconcile avidity and flexible threshold models of Treg differentiation and be used to implement therapeutic approaches involving Treg manipulation.
710 _9625
_aInstituto de Investigación imas12
856 _uhttp://pc-h12o-es.m-hdoct.a17.csinet.es/pdf/pc/1/pc15954.pdf
_ySolicitar documento
942 _2ddc
_cART
_n0