Biblioteca Hospital 12 de Octubre
Vista normal Vista MARC Vista ISBD

Genetic barrier to resistance for dolutegravir. [revisión]

Por: Pulido Ortega, Federico [Unidad VIH] | Delgado Vázquez, Rafael [Microbiología y Parasitología].
Colaborador(es): Servicio de Medicina Interna | Servicio de Microbiología y Parasitología | Instituto de Investigación imas12.
Tipo de material: materialTypeLabelArtículoEditor: AIDS reviews, 2015Descripción: 17(1):56-64.Recursos en línea: Solicitar documento Resumen: Dolutegravir is a novel integrase strand-transfer inhibitor that displays potent in vitro activity and a remarkably different resistance profile. Its robust pharmacokinetic/pharmacodynamic properties - long plasma t1/2, high plasma inhibition quotient, and slow dissociation rate from the integrase complex - suggest it should present a high barrier to resistance development. This has been confirmed in pivotal phase III studies of initial therapy, with none out of 1,118 treated individuals selecting resistance-associated mutations at the integrase or reverse transcriptase. In integrase-naive subjects with virological failure, a rescue intervention with dolutegravir has shown significantly higher rates of virological suppression than raltegravir, as well as significantly lower rates of selection of resistance both at the integrase and against the optimized background. Unexpectedly, a mutation rarely selected in this scenario (R263K) induces a fitness cost that prevents HIV-1 from evading drug pressure, and accumulation of further secondary mutations does not occur and has not been able to compensate the replication capacity deficit in the aftermath of the appearance of a single drug resistance mutation. Therefore, both in vitro and in vivo, it leads the virus to a previously unnoticed evolutionary pathway with low chances to develop resistance to both dolutegravir and other families of antiretrovirals present in the background. This high genetic barrier to resistance development in early stages of antiretroviral treatment can help preserve future treatment options in patients who fail antiretroviral therapy.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    valoración media: 0.0 (0 votos)
Tipo de ítem Ubicación actual Signatura Estado Fecha de vencimiento
Revisión Revisión PC17036 (Navegar estantería) Disponible

Formato Vancouver:
Llibre JM, Pulido F, García F, García Deltoro M, Blanco JL, Delgado R. Genetic barrier to resistance for dolutegravir. AIDS Rev. 2015 Jan-Mar;17(1):56-64.

PMID: 25472016

Contiene 65 referencias

Dolutegravir is a novel integrase strand-transfer inhibitor that displays potent in vitro activity and a remarkably different resistance profile. Its robust pharmacokinetic/pharmacodynamic properties - long plasma t1/2, high plasma inhibition quotient, and slow dissociation rate from the integrase complex - suggest it should present a high barrier to resistance development. This has been confirmed in pivotal phase III studies of initial therapy, with none out of 1,118 treated individuals selecting resistance-associated mutations at the integrase or reverse transcriptase. In integrase-naive subjects with virological failure, a rescue intervention with dolutegravir has shown significantly higher rates of virological suppression than raltegravir, as well as significantly lower rates of selection of resistance both at the integrase and against the optimized background. Unexpectedly, a mutation rarely selected in this scenario (R263K) induces a fitness cost that prevents HIV-1 from evading drug pressure, and accumulation of further secondary mutations does not occur and has not been able to compensate the replication capacity deficit in the aftermath of the appearance of a single drug resistance mutation. Therefore, both in vitro and in vivo, it leads the virus to a previously unnoticed evolutionary pathway with low chances to develop resistance to both dolutegravir and other families of antiretrovirals present in the background. This high genetic barrier to resistance development in early stages of antiretroviral treatment can help preserve future treatment options in patients who fail antiretroviral therapy.

No hay comentarios para este ejemplar.

Ingresar a su cuenta para colocar un comentario.

Con tecnología Koha