Biblioteca Hospital 12 de Octubre
Vista normal Vista MARC Vista ISBD

AMPK and GCN2–ATF4 signal the repression of mitochondria in colon cancer cells. [artículo]

Por: Cuezva, J.M [Instituto de Investigación i+12].
Colaborador(es): Instituto de Investigación imas12.
Editor: Biochemical Journal, 2012Descripción: 444(2):249-59.Recursos en línea: Solicitar documento Resumen: Reprogramming of energetic metabolism is a phenotypic trait of cancer in which mitochondrial dysfunction represents a key event in tumour progression. In the present study, we show that the acquisition of the tumour-promoting phenotype in colon cancer HCT116 cells treated with oligomycin to inhibit ATP synthase is exerted by repression of the synthesis of nuclear-encoded mitochondrial proteins in a process that is regulated at the level of translation. Remarkably, the synthesis of glycolytic proteins is not affected in this situation. Changes in translational control of mitochondrial proteins are signalled by the activation of AMPK (AMP-activated protein kinase) and the GCN2 (general control non-derepressible 2) kinase, leading also to the activation of autophagy. Changes in the bioenergetic function of mitochondria are mimicked by the activation of AMPK and the silencing of ATF4 (activating transcription factor 4). These findings emphasize the relevance of translational control for normal mitochondrial function and for the progression of cancer. Moreover, they demonstrate that glycolysis and oxidative phosphorylation are controlled at different levels of gene expression, offering the cell a mechanistic safeguard strategy for metabolic adaptation under stressful conditions.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    valoración media: 0.0 (0 votos)
Tipo de ítem Ubicación actual Signatura Estado Fecha de vencimiento
Artículo Artículo PC3909 (Navegar estantería) Disponible

Formato Vancouver:
Martínez-Reyes I, Sánchez-Aragó M, Cuezva JM. AMPK and GCN2-ATF4 signal the repression of mitochondria in colon cancer cells. Biochem J. 2012 Jun 1;444(2):249-59.

PMID: 22435535

Contiene 49 referencias

Reprogramming of energetic metabolism is a phenotypic trait of cancer in which mitochondrial dysfunction represents a key event in tumour progression. In the present study, we show that the acquisition of the tumour-promoting phenotype in colon cancer HCT116 cells treated with oligomycin to inhibit ATP synthase is exerted by repression of the synthesis of nuclear-encoded mitochondrial proteins in a process that is regulated at the level of translation. Remarkably, the synthesis of glycolytic proteins is not affected in this situation. Changes in translational control of mitochondrial proteins are signalled by the activation of AMPK (AMP-activated protein kinase) and the GCN2 (general control non-derepressible 2) kinase, leading also to the activation of autophagy. Changes in the bioenergetic function of mitochondria are mimicked by the activation of AMPK and the silencing of ATF4 (activating transcription factor 4). These findings emphasize the relevance of translational control for normal mitochondrial function and for the progression of cancer. Moreover, they demonstrate that glycolysis and oxidative phosphorylation are controlled at different levels of gene expression, offering the cell a mechanistic safeguard strategy for metabolic adaptation under stressful conditions.

No hay comentarios para este ejemplar.

Ingresar a su cuenta para colocar un comentario.

Con tecnología Koha