Preterm infant gut colonization in the neonatal ICU and complete restoration 2 years later. [artículo]
Por: Bustos Lozano, Gerardo [Neonatología] | Chaves Sánchez, Fernando [Microbiología y Parasitología].
Colaborador(es): Servicio de Neonatología | Servicio de Microbiología y Parasitología.
Tipo de material: ArtículoEditor: Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases, 2015Descripción: 21(10):936.e1-10.Recursos en línea: Solicitar documento Resumen: Preterm infants in a neonatal intensive care unit (NICU) are exposed to multidrug-resistant bacteria previously adapted to the hospital environment. The aim of the present study was to characterize the bacterial antibiotic-resistant high-risk lineages colonizing preterm infants during their NICU stay and their persistence in faeces after 2 years. A total of 26 preterm neonates were recruited between October 2009 and June 2010 and provided 144 faecal samples. Milk samples (86 mother's milk, 35 human donor milk and 15 formula milk) were collected at the same time as faecal samples. An additional faecal sample was recovered in 16 infants at the age of 2 years. Samples were plated onto different selective media, and one colony per morphology was selected. Isolates were identified by 16S rDNA nucleotide sequence and MALDI-TOF. Antibiotic susceptibility (agar dilution), genetic diversity (RAPD, PFGE and MLST) and virulence factors (only in enterococcal and staphylococcal isolates) were determined by PCR. A high proportion of antibiotic-resistant high-risk clones was detected in both faecal and milk samples during the NICU admittance. Almost all infants were colonized by Enterococcus faecalis ST64 and Enterococcus faecium ST18 clones, while a wider genetic diversity was observed for the Gram-negative isolates. Multidrug-resistant high-risk clones were not recovered from the faecal samples of the 2-year-olds. In conclusion, the gut of preterm infants admitted to the NICU might be initially colonized by antibiotic-resistant and virulent high-risk lineages, which are later replaced by antibiotic-susceptible community ones.Tipo de ítem | Ubicación actual | Signatura | Estado | Fecha de vencimiento |
---|---|---|---|---|
Artículo | PC17267 (Navegar estantería) | Disponible |
Formato Vancouver:
Moles L, Gómez M, Jiménez E, Fernández L, Bustos G, Chaves F et al. Preterm infant gut colonization in the neonatal ICU and complete restoration 2 years later. Clin Microbiol Infect. 2015 Oct;21(10):936.e1-10.
PMID: 26086569
Contiene 45 referencias
Preterm infants in a neonatal intensive care unit (NICU) are exposed to multidrug-resistant bacteria previously adapted to the hospital environment. The aim of the present study was to characterize the bacterial antibiotic-resistant high-risk lineages colonizing preterm infants during their NICU stay and their persistence in faeces after 2 years. A total of 26 preterm neonates were recruited between October 2009 and June 2010 and provided 144 faecal samples. Milk samples (86 mother's milk, 35 human donor milk and 15 formula milk) were collected at the same time as faecal samples. An additional faecal sample was recovered in 16 infants at the age of 2 years. Samples were plated onto different selective media, and one colony per morphology was selected. Isolates were identified by 16S rDNA nucleotide sequence and MALDI-TOF. Antibiotic susceptibility (agar dilution), genetic diversity (RAPD, PFGE and MLST) and virulence factors (only in enterococcal and staphylococcal isolates) were determined by PCR. A high proportion of antibiotic-resistant high-risk clones was detected in both faecal and milk samples during the NICU admittance. Almost all infants were colonized by Enterococcus faecalis ST64 and Enterococcus faecium ST18 clones, while a wider genetic diversity was observed for the Gram-negative isolates. Multidrug-resistant high-risk clones were not recovered from the faecal samples of the 2-year-olds. In conclusion, the gut of preterm infants admitted to the NICU might be initially colonized by antibiotic-resistant and virulent high-risk lineages, which are later replaced by antibiotic-susceptible community ones.
No hay comentarios para este ejemplar.