Biblioteca Hospital 12 de Octubre
Vista normal Vista MARC Vista ISBD

Genetic predisposition to albuminuria is associated with increased arterial stiffness: role of elastin. [artículo]

Por: Ruiz Hurtado, Gema [Instituto de Investigación i+12].
Colaborador(es): Instituto de Investigación imas12.
Tipo de material: materialTypeLabelArtículoEditor: British journal of pharmacology, 2015Descripción: 172(17):4406-18.Recursos en línea: Acceso libre Resumen: Background and purpose: The Munich Wistar Frömter (MWF) rat strain represents an experimental model to study cardiovascular alterations under conditions of progressive albuminuria. The aim of this study was to evaluate the association between genetic predisposition to albuminuria and the development of arterial stiffness and/or vascular remodelling. Experimental approach: Experiments were performed in mesenteric arteries from 12-week-old MWF, Wistar Kyoto (WKY) and consomic MWF-6(SHR) and MWF-8(SHR) rats in which chromosomes 6 or 8 associated with albuminuria from MWF were replaced by the respective chromosome from spontaneously hypertensive rats (SHR). Key results: Incremental distensibility, wall stress and strain were reduced, and arterial stiffness was significantly increased in albuminuric MWF compared with WKY. Albuminuria suppression in both consomic strains was associated with lower β-values in MWF-8(SHR) and MWF-6(SHR) compared with MWF. Moreover, elastin content was significantly lower in MWF external elastic lamina compared with WKY and both consomic strains. In addition, a reduction in arterial external and internal diameter and cross-sectional area was detected in MWF compared with WKY, thus exhibiting an inward hypotrophic remodelling. However, these alterations remained unchanged in both consomic strains. Conclusion and implications: These data demonstrate that albuminuria in MWF is associated with increased arterial stiffness due to a reduction of elastin content in the external elastic lamina. Moreover, inward hypotrophic remodelling in MWF is not directly associated with albuminuria. In contrast, we demonstrated that two major genetic loci affect both the development of albuminuria and arterial stiffness, thus linking albuminuria and impairment of mechanical properties of resistance arteries.
Etiquetas de esta biblioteca: No hay etiquetas de esta biblioteca para este título. Ingresar para agregar etiquetas.
    valoración media: 0.0 (0 votos)
Tipo de ítem Ubicación actual Signatura Estado Fecha de vencimiento
Artículo Artículo PC17037 (Navegar estantería) Disponible

Formato Vancouver:
Gil Ortega M, García Prieto CF, Ruiz Hurtado G, Steireif C, González MC, Schulz A et al. Genetic predisposition to albuminuria is associated with increased arterial stiffness: role of elastin. Br J Pharmacol. 2015 Sep;172(17):4406-18.

PMID: 26075500
PMC4556477

Contiene 62 referencias

Background and purpose: The Munich Wistar Frömter (MWF) rat strain represents an experimental model to study cardiovascular alterations under conditions of progressive albuminuria. The aim of this study was to evaluate the association between genetic predisposition to albuminuria and the development of arterial stiffness and/or vascular remodelling.
Experimental approach: Experiments were performed in mesenteric arteries from 12-week-old MWF, Wistar Kyoto (WKY) and consomic MWF-6(SHR) and MWF-8(SHR) rats in which chromosomes 6 or 8 associated with albuminuria from MWF were replaced by the respective chromosome from spontaneously hypertensive rats (SHR).
Key results: Incremental distensibility, wall stress and strain were reduced, and arterial stiffness was significantly increased in albuminuric MWF compared with WKY. Albuminuria suppression in both consomic strains was associated with lower β-values in MWF-8(SHR) and MWF-6(SHR) compared with MWF. Moreover, elastin content was significantly lower in MWF external elastic lamina compared with WKY and both consomic strains. In addition, a reduction in arterial external and internal diameter and cross-sectional area was detected in MWF compared with WKY, thus exhibiting an inward hypotrophic remodelling. However, these alterations remained unchanged in both consomic strains.
Conclusion and implications: These data demonstrate that albuminuria in MWF is associated with increased arterial stiffness due to a reduction of elastin content in the external elastic lamina. Moreover, inward hypotrophic remodelling in MWF is not directly associated with albuminuria. In contrast, we demonstrated that two major genetic loci affect both the development of albuminuria and arterial stiffness, thus linking albuminuria and impairment of mechanical properties of resistance arteries.

No hay comentarios para este ejemplar.

Ingresar a su cuenta para colocar un comentario.

Con tecnología Koha