Biblioteca Hospital 12 de Octubre
Sánchez Salcedo, Sandra Arcos, Daniel Vallet Regí, María

Nanocrystalline silicon substituted hydroxyapatite effects on osteoclast differentiation and resorptive activity. [artículo] - Journal of materials chemistry. B, 2014 - 2(19):2910-2919.

Formato Vancouver:
Matesanz MC , Linares J , Lilue I , Sánchez Salcedo S , Feito MJ, Arcos D et al. Nanocrystalline silicon substituted hydroxyapatite effects on osteoclast differentiation and resorptive activity. J Mater Chem B. 2014 May 21;2(19):2910-2919.

PMID: 32261486

Contiene 60 referencias

In the present study, the effects of nanocrystalline hydroxyapatite (nano-HA) and nanocrystalline Si-substituted hydroxyapatite (nano-SiHA) on osteoclast differentiation and resorptive activity have been evaluated in vitro using osteoclast-like cells. The action of these materials on proinflammatory and reparative macrophage populations was also studied. Nano-SiHA disks delayed the osteoclast differentiation and decreased the resorptive activity of these cells on their surface, as compared to nano-HA samples, without affecting cell viability. Powdered nano-SiHA also induced an increase of the reparative macrophage population. These results along with the beneficial effects on osteoblasts previously observed with powdered nano-SiHA suggest the potential of this biomaterial for modulating the fundamental processes of bone formation and turnover, preventing bone resorption and enhancing bone formation at implantation sites in treatment of osteoporotic bone and in bone repair and regeneration.

Con tecnología Koha